УДК 512.544.33

Многообразия степенных R-групп

М. Г. Амаглобели, А. Г. Мясников, Т. Т. Надирадзе

К 80-летию В. Д. Мазурова

Понятие степенной R-группы, где R — произвольное ассоциативное кольцо с единицей, ввёл Р. Линдон в работе [1]. А.Г. Мясников и В. Н. Ремесленников уточнили понятие степенной R-группы, введя дополнительную аксиому [2]. Новое понятие R-группы является непосредственным обобщением понятия R-модуля на случай некоммутативных групп. В статье М. Г. Амаглобели и В. Н. Ремесленникова [3] *R*-группы с этой дополнительной аксиомой названы MR-группами. Оказалось, что все ранее изученные R-группы Линдона на самом деле являются MR-группами (включая свободную $\mathbb{Z}[t]$ -группу Линдона $F^{\mathbb{Z}[t]}$). В данной работе изучаются только те *R*-группы, которые являются *MR*-группами. Для простоты обозначений всюду далее, если не оговорено противное, под *R*-группой мы будем понимать MR-группу, а класс всех R-групп обозначим \mathfrak{M}_R . Хорошо известна роль тензорного расширения кольца скаляров для модулей. Авторы работы [2] определили точный аналог этой конструкции для произвольной R-группы — тензорное пополнение. В работе [4] предложен конкретный способ построения тензорного пополнения данной *R*-группы. Систематическое изучение *R*-групп начато в работах [3–8]. Отметим, что результаты этих работ оказались весьма полезны при решении известных проблем Тарского.

В настоящей работе вводятся понятия многообразия степенных R-групп и тензорного пополнения групп в многообразии. Изучается связь

Работа авторов выполнена при поддержке Грузинского национального фонда Шота Руставели (код проекта FR-21-4713).

[©] Сибирский фонд алгебры и логики, 2011

между свободными группами данного многообразия при различных кольцах скаляров. Даётся описание абелевых многообразий R-групп. Кроме того, в категории R-групп вводятся различные аналоги понятия n-ступенно нильпотентной и n-ступенно разрешимой R-группы и проводятся их сравнение в этой категории. Устанавливается, что пополнение 2-ступенно нильпотентной R-группы является 2-ступенно нильпотентной.

В определении многообразия R-групп мы следуем стандартной схеме. Существенное отличие изучаемого случая от классического в том, что, во-первых, понятие многообразия расслаивается в зависимости от кольца скаляров, а во-вторых, вербальная подгруппа, вообще говоря, не порождается значениями слов, определяющих многообразие, она порождается ими как R-идеал в классе \mathcal{M}_R . Эта принципиальная особенность происходит от того, что сам класс \mathcal{M}_R является квазимногообразием (а не многообразием) в языке L_{qr}^R теории групп с экспонентами в R. Поэтому, все подклассы R-групп, определяемые в \mathcal{M}_R R-тождествами (так называемые \mathfrak{M}_{R} -эквациональные классы), являются многообразиями только относительно \mathfrak{M}_R , а в языке L^R_{gr} они — квазимногообразия. К счастью, функтор тензорного пополнения связывает слои многообразий по различным кольцам скаляров, а общая теория порождающих и соотношений, свободных групп, и т.д., работает также хорошо в квазимногообразиях, как и в многообразиях. В двух последних секциях статьи сформулированы некоторые принципиальные открытые вопросы теории разрешимых и нильпотентных R-групп. Дело в том, что определения эквивалентные в классическом смысле, т.е., для **Z**-групп, возможно дают неэквивалентные аналоги в классе R-групп над различными кольцами R. Часть результатов этой статьи были ранее анонсированы в различных препринтах и докладах, в частности, в [9].

1 Предварительные сведения

Напомним основные определения и факты, следуя работам [1, 2]. Пусть $L_{gr} = \{\cdot, \,^{-1}, e\}$ — групповой язык (сигнатура), где \cdot — бинарная опе-

рация умножения, $^{-1}$ — унарная операция обращения, e — константный символ для единицы группы. В дальнейшем, если не оговорено противное, R всегда обозначает произвольное фиксированное ассоциативное кольцо с единицей 1 (возможно, некоммутативное!). Обогатим групповой язык L_{gr} до языка $L_{gr}^R = L_{gr} \cup \{f_{\alpha}(g) \mid \alpha \in R\}$, где $f_{\alpha}(g)$ — унарная алгебраическая операция, соответствующая возведению в степень α .

Определение 1.1 ([1]). Множество G будем называть линдоновой R-группой, если на нём определены операции \cdot , $^{-1}$, e, $\{f_{\alpha}(g) \mid \alpha \in R\}$ и выполнены следующие аксиомы (ниже для краткости выражение $f_{\alpha}(g)$ записываем в виде g^{α}):

- 1) аксиомы группы;
- 2) для всех $g,h \in G$ и $\alpha,\beta \in R$ выполняются равенства

$$g^1 = g, \ g^0 = e, \ e^{\alpha} = e;$$
 (1.1)

$$g^{\alpha+\beta} = g^{\alpha}g^{\beta}, \quad g^{\alpha\beta} = (g^{\alpha})^{\beta},$$
 (1.2)

$$(h^{-1}gh)^{\alpha} = h^{-1}g^{\alpha}h. \tag{1.3}$$

Обозначим через \mathcal{L}_R категорию линдоновых R-групп. Такие группы будем называть *группами с экспоненциированием в* R или R-степенными группами.

Аксиомы, приведённые выше, являются тождествами языка L_{gr}^R , поэтому класс \mathcal{L}_R является многообразием алгебраических систем языка L_{gr}^R , и из общих теорем универсальной алгебры следует, что можно говорить об R-гомоморфизмах, свободных R-группах, о многообразиях R-групп, о квазимногообразиях R-групп и т. д.

Существуют абелевы линдоновы R-группы, не являющиеся R-модулями (см. [10], где подробно исследована структура свободной абелевой линдоновой R-группы). Авторы работы [2] добавили к аксиомам Линдона дополнительную схему аксиом, а именно следующую серию квазитождеств:

$$(MR$$
-аксиома) $\forall g, h \quad [g, h] = e \longrightarrow (gh)^{\alpha} = g^{\alpha}h^{\alpha}, \quad \alpha \in R,$ (1.4)

где $[g,h] = g^{-1}h^{-1}gh$.

Определение 1.2 ([2]). Группу $G \in \mathcal{L}_R$ будем называть MR-группой, если G удовлетворяет MR-аксиоме (1.4).

Обозначим через \mathcal{M}_R класс всех R-групп с экспоненциированием в R, удовлетворяющих MR-аксиоме (1.4). По определению $\mathcal{L}_R \supset \mathcal{M}_R$ и, кроме того, каждая абелева R-группа из \mathcal{M}_R является R-модулем и наоборот. Большинство естественных примеров степенных R-групп лежат в классе \mathcal{M}_R . Произвольная группа является \mathbb{Z} -группой из класса $\mathcal{M}_{\mathbb{Z}}$; абелева делимая группа из $\mathcal{L}_{\mathbb{Q}}$ принадлежит $\mathcal{M}_{\mathbb{Q}}$; группа периода n является $\mathbb{Z}/n\mathbb{Z}$ -степенной MR-группой; свободная степенная линдонова R-группа является R-степенной R-группой; произвольная про-p-группа является степенной \mathbb{Z}_p -группой из класса $\mathcal{M}_{\mathbb{Z}_p}$, где \mathbb{Z}_p — это кольцо целых p-адических чисел; и т. д. (см. другие примеры в [2]).

В этой статье мы изучаем группы из класса \mathcal{M}_R , поэтому в дальнейшем, если не оговорено противное, под R-группой мы всегда будем понимать группу из класса \mathcal{M}_R .

Класс \mathcal{M}_R является квазимногообразием в сигнатуре L_{gr}^R . Пусть \mathcal{N} — некоторое многообразие \mathcal{L}_R -групп. Рассмотрим пересечение $\mathcal{N} \cap \mathcal{M}_R = \mathcal{N}_R$. Класс \mathcal{N}_R также является квазимногообразием в языке L_{gr}^R , поэтому в нём существуют свободные R-группы, есть теория определяющих соотношений, класс \mathcal{N}_R замкнут относительно взятия R-подгрупп, в нём можно вычилять R-фактор-группы [11]. Несмотря на то, что классы \mathcal{N}_R являются квазимногообразиями, на них можно смотреть как на многообразия внутри квазимногообразия \mathcal{M}_R , то есть как на относительные биркгофы классы. По этой причине нам удобно называть их многообразиями R-групп.

Собственно говоря, для любой группы $G \in \mathcal{L}_R$ стандартным образом (см. [2]) вводятся понятия R-подгруппы, R-порождаемости, нормальной R-подгруппы и т. д. В частности, гомоморфизм R-групп $\varphi \colon G \to G^*$ называется R-гомоморфизмом, если $\varphi(g^\alpha) = \varphi(g)^\alpha$ для любых $g \in G$, $\alpha \in R$.

Определение 1.3 ([2]). Пусть $G\in\mathcal{L}_R$. Для $g,h\in G,\,\alpha\in R,\,$ элемент

$$(g,h)_{\alpha} = h^{-\alpha}g^{-\alpha}(gh)^{\alpha}$$

назовём α -коммутатором элементов g и h.

Непосредственно проверяется, что для $G \in \mathcal{L}_R$ верны следующие утверждения:

$$(gh)^{\alpha} = g^{\alpha}h^{\alpha}(g,h)_{\alpha} \tag{1.5}$$

$$(g,h)_{-1} = [h^{-1}, g^{-1}] (1.6)$$

$$f^{-1}(g,h)_{\alpha}f = (f^{-1}gf, f^{-1}hf)_{\alpha} \tag{1.7}$$

$$G \in \mathcal{M}_R \iff ([g,h] = e \Longrightarrow (g,h)_\alpha = e).$$
 (1.8)

Последняя эквивалентность приводит к определению \mathfrak{M}_R -идеала.

Определение 1.4 ([2]). Пусть $G \in \mathcal{L}_R$. Нормальная R-подгруппа $H \leq G$ называется \mathcal{M}_R -идеалом, если для любых $g,h \in G$ из того, что $[g,h] \in H$ следует $(g,h)_{\alpha} \in H$ для любого $\alpha \in R$.

В дальнейшем, \mathcal{M}_R -идеалы H в G мы часто будем называть просто R-идеалами и обозначать $H \leq_R G$. В [2] показано, что если $\varphi \colon G \to G^* - R$ -гомоморфизм групп из \mathcal{M}_R , то $\ker \varphi - R$ -идеал в G, и если H - R-идеал в $G \in \mathcal{M}_R$, то $G/H \in \mathcal{M}_R$.

Предложение 1.1. Пусть $G \in \mathcal{L}_R$. Тогда:

- 1) Пересечение любого непустого семейства R-идеалов в G является R-идеалом.
- 2) Для любого подмножества $Y \subseteq G$ существует наименьший по включению R-идеал в G, содержащий Y.

Доказательство этого предложения стандартно.

Определение 1.5. Пусть $G \in \mathcal{L}_R$ и $Y \subseteq G$. Тогда через $id_R(Y)$ мы обозначаем наименьший по включению R-идеал в G, содержащий Y.

Строение *R*-идеалов проясняет следующая лемма.

Предложение 1.2. Пусть $G \in \mathcal{L}_R$ и $Y \subseteq G$. Тогда $id_R(Y)$ есть объединение следующей возрастающей цепочки R-подгрупп в G:

$$H_0 \leq H_1 \leq H_2 \leq \cdots \leq H_n \leq \cdots$$

где H_0 — это нормальная R-подгруппа, порожденная Y, u

$$H_{i+1} = \langle H_i, (g_1, g_2)_{\alpha} \mid [g_1, g_2] \in H_i, \ \alpha \in R \rangle_R.$$

Заметим, что все подгруппы H_i являются нормальными подгруппами в G.

Доказательство. По определению R-идеала все H_i содержатся в $id_R(Y)$. Из равенства (1.7) следует, что все H_i являются нормальными R-подгруппами в G, а потому нормальной подгруппой является и их объединение $\bigcup_i H_i$. Также непосредственно проверяется по построению, что $\bigcup_i H_i$ является R-идеалом. Следовательно, $id_R(Y) = \bigcup_i H_i$.

Предложение 1.3. Пусть $G \in \mathcal{L}_R$ и $Y \subseteq G$. Тогда для любого R-эндоморфизма $\phi \colon G \to G$

$$\phi(id_R(Y)) \le id_R(\phi(Y)).$$

B частности, если ϕ — это R-автоморфизм, то

$$\phi(id_R(Y)) = id_R(\phi(Y)).$$

Доказательство. В обозначениях предложения 1.2 достаточно доказать, что для любого $i\in\mathbb{N}$

$$\phi(H_i(Y)) \le H_i(\phi(Y)),$$

где $H_i(Y)$ (соответственно $H_i(\phi(Y))$) — это подгруппа H_i , построенная в предложении 1.2 для множества Y (соответственно $\phi(Y)$). Ясно, что $\phi(H_0(Y)) \leq H_0(\phi(Y))$. По индукции мы можем предполагать, что $\phi(H_i(Y)) \leq H_i(\phi(Y))$. Из определения $H_{i+1}(Y)$ следует, что

$$\phi(H_{i+1}(Y)) \le \langle \phi(H_i(Y)), \phi((g_1, g_2)_{\alpha}) \mid [g_1, g_2] \in H_i(Y), \ \alpha \in R \rangle_R$$
 (1.9)

Заметим, что $[g_1,g_2] \in H_i(Y)$ влечет $\phi([g_1,g_2]) = [\phi(g_1),\phi(g_2)] \in H_i(\phi(Y))$. Следовательно,

$$(\phi(g_1), \phi(g_2))_{\alpha} \in H_{i+1}(\phi(Y))$$
 (1.10)

Тогда

$$\phi((g_1, g_2)_{\alpha}) = \phi(g_2^{-\alpha} g_1^{-\alpha} (g_1 g_2)^{\alpha}) = \phi(g_2)^{-\alpha} \phi(g_1)^{-\alpha} (\phi(g_1) \phi(g_2))^{\alpha} = (\phi(g_1), \phi(g_2))_{\alpha},$$

Поэтому, из (1.10) имеем $\phi((g_1,g_2)_{\alpha}) \in H_{i+1}(\phi(Y))$, а значит по (1.9) $\phi(H_{i+1}(Y)) \leq H_{i+1}(\phi(Y))$, и утверждение предложения следует по индукции.

Следствие. Пусть $G \in \mathcal{L}_R$ и $Y \subseteq G$. Если Y инвариантно относительно всех R-эндоморфизмов G, то идеал $id_R(Y)$ инвариантен относительно всех R-эндоморфизмов G.

Определяющую роль при изучении степенных R-групп играет операция тензорного пополнения. Она естественно обобщает понятие расширения кольца скаляров для модулей на некоммутативный случай. Тензорное пополнение используется при определении свободных конструкций в классе \mathcal{M}_R , включая понятие свободной R-группы.

Определение 1.6 ([2]). Пусть G-R-группа, $\mu\colon R\to S$ — гомоморфизм колец. Тогда S-группа $G^{S,\mu}$ называется тензорным S-пополнением R-группы G, если $G^{S,\mu}$ удовлетворяет следующему универсальному свойству:

- 1) существует гомоморфизм $\lambda\colon G\to G^{S,\mu}$, согласованный с μ (т. е. $\lambda(g^{\alpha})=(\lambda(g))^{\mu(\alpha)}$ для всех $g\in G$ и $\alpha\in R$), такой, что $\lambda(G)$ S-порождает $G^{S,\mu}$, т. е. $\langle\lambda(G)\rangle_S=G^{S,\mu}$;
- 2) для любой S-группы H и любого гомоморфизма $\varphi\colon G\to H,$ согласованного с $\mu,$ существует S-гомоморфизм $\psi\colon G^{S,\mu}\to H,$ делающий коммутативной диаграмму

При фиксированном гомоморфизме колец $\mu \colon R \to S$ такие групповые гомоморфизмы, как λ и φ из определения выше, согласованные с μ , далее будем называть просто R-гомоморфизмами.

Отметим, что если G — абелева R-группа, то $G^{S,\mu} \cong G \bigotimes_R S$ — тензорное произведение R-модуля G на кольцо S. В [2] доказано, что для любой

R-группы G и произвольного гомоморфизма $\mu\colon R\to S$ тензорное пополнение $G^{S,\mu}$ существует и единственно с точностью до R-гомоморфизма.

В дальнейшем гомоморфизм колец $\mu \colon R \to S$ будет фиксирован, а потому вместо $G^{S,\mu}$ в доказательствах будем только использовать запись G^S . В приложениях μ чаще всего будет вложением колец, но и в таком случае R-гомоморфизм $\lambda \colon G \to G^S$ не всегда является вложением. В [2, предложение 11] дано общее достаточное условие, при котором λ является вложением. Работа Мясникова и Ремесленникова [5] посвящена изучению групп, которые изоморфно вкладываются в своё тензорное пополнение над кольцом R.

2 Многообразия *R*-групп

Многообразия тесно связаны со свободными группами, поскольку тождества — это элементы свободных групп. Пусть $X=\{x_i\mid i\in I\}$ — бесконечный счётный алфавит, R — кольцо с единицей, $F_R(X)$ — свободная R-группа с базой X. В [2] доказано, что для любых X и R ($\mathbb{Z}\leqslant R$) свободная R-группа $F_R(X)$ существует, единственна с точностью до R-изоморфизма и $F_R(X)\cong F(X)^R$, где F(X) — абсолютно свободная группа с базой X. Элемент $w(x_1,\ldots,x_n)\in F_R(X)$ будем называть R-словом в алфавите X. Если $G\in \mathcal{M}_R$ и $g_1,\ldots,g_n\in G$, то отображение $x_i\mapsto g_i$ продолжается до R-гомоморфизма $\varphi\colon F_R(X)\to G$. Образ $w(x_1,\ldots,x_n)^\varphi=w(g_1,\ldots,g_n)\in G$ будем называть значением слова w при подстановке $x_1=g_1,\ldots,x_n=g_n$.

Будем пользоваться следующими обозначениями:

$$w(\overline{x}) = w(x_1, \dots, x_n), \quad \overline{x} = (x_1, \dots, x_n),$$

$$w(\overline{g}) = w(g_1, \dots, g_n), \quad \overline{g} = (g_1, \dots, g_n),$$

$$w(G) = \{w(g_1, \dots, g_n) \mid g_i \in G\}.$$

R-слово $w(\overline{x})$ будем называть тождеством в группе $G \in \mathcal{M}_R$, если w(G) = e.

Определение 2.1. Пусть W — произвольное множество R-слов в алфавите X. Тогда W определяет многообразие R-групп

$$\mathcal{N} = \mathcal{N}_R(W) = \{G \in \mathcal{M}_R \mid w(G) = e \ \forall w \in W\}.$$

Для тождеств естественным образом определяется понятие следствия: R-слово $u(\overline{x})$ следует из множества слов $W \subseteq F_R(X)$, если u(G) = e для любой группы $G \in \mathcal{N}_R(W)$. Множества R-слов W_1 и W_2 эквивалентны, если каждое R-слово из W_2 является следствием из W_1 и наоборот. В частности, два R-слова, получаемые одно из другого переименованием букв, эквивалентны.

Определение 2.2. \mathcal{M}_R -идеал в G, порождённый множеством значений всех R-слов из множества W, назовём W-вербальным идеалом в G. Далее W-вербальный идеал обозначается через $W_R(G)$ или просто W(G), если кольцо R ясно из контекста.

Предложение 2.1. W-вербальный идеал $W_R(F_R(X))$ в $F_R(X)$, пороженный множеством R-слов $W \subseteq F_R(X)$, состоит в точности из всех следствий множества W в $F_R(X)$.

 \mathcal{A} оказательство. Пусть \overline{W} — множество всех следствий из W. Ясно, что

$$W \subset \overline{W} \subset W(F_R(X))$$

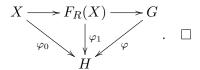
(это включение верно потому, что $G = F_R(X)/W_R(F_R(X)) - R$ -группа из $\mathcal{N}_R(W)$ и только элементы из $W_R(F_R(X))$ являются тождествами в этой группе). Более того, \overline{W} — нормальная R-подгруппа, так как \overline{W} замкнуто относительно произведения, взятия обратного, возведения в степень из R и эндоморфизмов (в частности, инвариантно относительно сопряжений). Осталось показать, что \overline{W} есть \mathcal{M}_R -идеал в $F_R(X)$. Если $[u(\overline{x}),v(\overline{x})]\in \overline{W}$, то в любой R-группе $G\in\mathcal{N}_R(W)$ и при любых $\overline{g}\in G^n$ имеем $[u(\overline{g}),v(\overline{g})]=e$, а значит, для любого $\alpha\in R$ имеем $(u(\overline{g}),v(\overline{g}))_{\alpha}=e$, т. е. $(u(\overline{g}),v(\overline{g}))_{\alpha}\in \overline{W}$, а это означает, что $\overline{W}-\mathcal{M}_R$ -идеал в $F_R(X)$.

В каждом многообразии $\mathcal{N}_R(W)$ есть свободные относительно этого многообразия группы. Группа $F_{W,R}(X) \in \mathcal{N}_R(W)$ называется свободной группой с базой X в многообразии $\mathcal{N}_R(W)$, если $F_{W,R}(X)$ R-порождается множеством X и для любой группы $G \in \mathcal{N}_R(W)$ каждое отображение $\varphi_0 \colon X \to G$ имеет единственное продолжение до R-гомоморфизма $\varphi \colon F_{W,R}(X) \to G$.

Теорема 2.1. Свободной группой в многообразии R-групп $\mathcal{N}_R(W)$ является группа

$$F_{W,R}(X) = F_R(X)/W_R(F_R(X)).$$

Доказательство. Ясно, что группа $G = F_R(X)/W_R(F_R(X))$ принадлежит $\mathcal{N}_R(W)$ и R-порождается множеством X. Пусть $H \in \mathcal{N}_R(W)$ и $\varphi_0 \colon X \to H$ — произвольное отображение. Так как $F_R(X)$ — свободная R-группа, φ_0 продолжается до R-гомоморфизма $\varphi_1 \colon F_R(X) \to H$. Ясно, что $W_R(F_R(X)) \subseteq \operatorname{Ker} \varphi_1$ (поскольку $H \in \mathcal{N}_R(W)$) и, значит, φ_1 индуцирует $\varphi \colon G \to H$, продолжающий $\varphi_0 \colon$



Теорема 2.2 (Биркгоф). Класс R-групп \mathbb{N} является R-многообразием тогда и только тогда, когда \mathbb{N} замкнут относительно взятия R-подгрупп, декартовых R-произведений и R-гомоморфных образов.

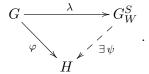
Доказательство этой теоремы дословно повторяет классическое доказательство (см. [12, 15.2.1]), только гомоморфизмы рассматриваются в категории \mathcal{M}_R .

3 Тензорные пополнения в многообразиях R-групп

Пусть $\mathcal{N}_R(W)$ — многообразие R-групп, заданное множеством слов W; $R \subseteq S$ — кольца; G — группа из $\mathcal{N}_R(W)$.

Определение 3.1. Пусть $G \in \mathcal{N}_R(W)$. Группу G_W^S будем называть тензорным S-пополнением G в многообразии $\mathcal{N}_S(W)$, если существует R-гомоморфизм $\lambda \colon G \to G_W^S$ такой, что $\lambda(G)$ S-порождает G_W^S , т.е. $\langle \lambda(G) \rangle_S = G_W^S$, и для любой группы H из $\mathcal{N}_S(W)$ и любого R-гомоморфизма $\varphi \colon G \to H$ существует S-гомоморфизм $\psi \colon G_W^S \to H$,

замыкающий до коммутативной диаграмму:



Отметим, что в отличии от [2] мы рассматриваем только ситуацию, когда $\mu\colon R\to S$ — вложение колец, а потому μ не участвует в определении и обозначениях. Это ограничение не является существенным и сделано только ради упрощения обозначений.

Теорема 3.1. Пусть $G \in \mathcal{N}_R(W)$. Тогда тензорное S-пополнение G_W^S относительно $\mathcal{N}_S(W)$ существует, причем

$$G_W^S = G^S/W(G^S).$$

Доказательство. Мы отмечали выше, что существует тензорное пополнение G^S группы G в классе всех S-групп \mathcal{M}_S и соответствующий R-гомоморфизм $\lambda\colon G\to G^S$ такой, что $\langle\lambda(G)\rangle_S=G^S$. Если $\eta\colon G^S\to G^S/W(G^S)$ — канонический эпиморфизм, то $\theta=\eta\lambda\colon G\to G^S/W(G^S)$ есть R-гомоморфизм, причем

$$\langle \theta(G) \rangle_S = G^S / W(G^S).$$

Осталось проверить универсальное свойство для $G^S/W(G^S)$. Пусть $\varphi\colon G\to H$ — произвольный R-гомоморфизм и $H\in \mathcal{N}_S(W)$. По определению G^S существует $\psi_0\colon G^S\to H$ такой, что $\varphi=\psi_0\lambda$. Так как $H\in \mathcal{N}_S(W)$, то $\psi_0(W(G^S))=e$. Поэтому ψ_0 индуцирует искомый гомоморфизм $\psi\colon G^S/W(G^S)\to H$, для которого следующая диаграмма коммутативна

$$G \xrightarrow{\lambda} G^S \xrightarrow{} G^S/W(G^S)$$

$$\downarrow^{\exists \psi_0} \qquad \qquad \downarrow^{\exists \psi}$$

$$H$$

Следовательно,

$$G_W^S \cong G^S/W(G^S)$$
. \square

Теорема 3.2. Пусть $R \subseteq S$ — кольца, $F_{W,R}(X)$ — свободная группа в многообразии $\mathcal{N}_R(W)$. Тогда $(F_{W,R}(X))_W^S$ — свободная группа в многообразии $\mathcal{N}_S(W)$, т. е.

$$(F_{W,R}(X))_W^S \cong F_{W,S}(X).$$

Доказательство. По теореме 3.1 $(F_{W,R}(X))_W^S \in \mathcal{N}_S(W)$. Пусть $H \in \mathcal{N}_S(W)$ и $\varphi_0 \colon X \to H$ — произвольное отображение. Тогда $H \in \mathcal{N}_R(W)$ и, значит, существует R-гомоморфизм $\varphi \colon F_{W,R}(X) \to H$ такой, что $\varphi_0 \subset \varphi$. Тогда по определению S-пополнения, найдётся S-гомоморфизм $\psi \colon (F_{W,R}(X))_W^S \to H$ и $\varphi \subset \psi$. Ясно, что ψ — искомый гомоморфизм, а значит, $(F_{W,R}(X))_W^S$ свободна в $\mathcal{N}_S(W)$.

4 R-коммутант и абелевы многообразия R-групп

Определение 4.1. Пусть G — произвольная R-группа. R-подгруппа

$$(G,G)_R = \langle (g,h)_\alpha \mid g,h \in G, \alpha \in R \rangle_R.$$

называется R-коммутантом группы G.

Предложение 4.1. Для любой R-группы G верны следующие утверждения:

- (a) R-коммутант G является вербальной R-подгруппой, определяемой словом $[x,y]=x^{-1}y^{-1}xy;$
- (b) R-коммутант это наименьший \mathfrak{M}_R -идеал, фактор-группа по которому абелева.

Доказательство. (а). По определению (см. определение 2.2) любая вербальная подгруппа в категории \mathcal{M}_R , порождённая множеством R-слов W, определяется следующим образом: прежде всего вычисляются все значения слов из W в группе G, затем всеми значениями R-порождается подгруппа в G и, наконец, берётся R-идеальное замыкание полученной подгруппы. В нашем конкретном случае значениями слова $x^{-1}y^{-1}xy$ являются все обычные коммутаторы группы G.

Ясно, что R-идеал, порожденный множеством всех значений слова [x,y], содержит [G,G], и значит $(G,G)_R$. С другой стороны, по определению $(G,G)_R$ есть наименьший R-идеал, содержащий [G,G]. Таким образом, R-коммутант $(G,G)_R$ является вербальной R-подгруппой, порожденной словом [x,y].

(b). Фактор-группа $G/(G,G)_R$ является абелевой степенной R-группой, а значит, R-модулем. Если N-любой \mathcal{M}_R -идеал такой, что G/N является R-модулем, то N содержит $[G,G]_R$, а потому и $(G,G)_R$.

Как уже отмечено, обычный коммутатор является (-1)-коммутатором. Какие ещё α -коммутаторы порождают R-коммутант как вербальную R-подгруппу? Ответим на этот вопрос в случае, когда R — поле.

Теорема 4.1. Пусть R — поле. Тогда α -коммутатор $(x, y)_{\alpha}$ порождает R-коммутант как вербальную R-подгруппу при условии $\alpha \neq 0, 1$.

Перед доказательством теоремы сформулируем и докажем

Предложение 4.2. В любой степенной R-группе G для любых $g, f \in G$ и $\alpha, \beta \in R$ справедливы следующие тождества для α -коммутаторов:

- 1) $[g^{\alpha}, f] = [g, f]^{\alpha} (g, [g, f])_{\alpha}$
- 2) Если кольцо R коммутативно, то

$$(g,f)_{\alpha}^{\beta} \big(f^{\alpha},(g,f)_{\alpha}\big)_{\beta} \big(g^{\alpha},f^{\alpha}(g,f)_{\alpha}\big)_{\beta} = (g,f)_{\beta}^{\alpha} \big(f^{\beta},(g,f)_{\beta}\big)_{\alpha} \big(g^{\beta},f^{\beta}(g,f)_{\beta}\big)_{\alpha}.$$

Доказательство. Покажем, что равенство 1) следует из аксиомы $(f^{-1}gf)^{\alpha}=f^{-1}g^{\alpha}f$ для всех $f,g\in G$ и $\alpha\in R$. Перепишем, это равенство, учитывая, что

$$f^{-1}g^{\alpha}f = g^{\alpha}g^{-\alpha}f^{-1}g^{\alpha}f = g^{\alpha}[g^{\alpha}, f],$$
$$(f^{-1}gf)^{\alpha} = (gg^{-1}f^{-1}gf)^{\alpha} = (g[g, f])^{\alpha} = g^{\alpha}[g, f]^{\alpha}(g, [g, f])_{\alpha}.$$

Сокращая на g^{α} , получаем необходимый результат.

Докажем равенство 2). Положим g=fh. Тогда, в силу коммутативности кольца R, $(g^{\alpha})^{\beta}=(g^{\beta})^{\alpha}.$

Распишем это равенство подробнее:

$$((fh)^{\alpha})^{\beta} = (f^{\alpha}h^{\alpha}(f,h)_{\alpha})^{\beta} = f^{\alpha\beta}(h^{\alpha}(f,h)_{\alpha})^{\beta}(f^{\alpha},h^{\alpha}(f,h)_{\alpha})_{\beta}$$

$$= f^{\alpha\beta}h^{\alpha\beta}(f,h)^{\beta}_{\alpha}(h^{\alpha},(f,h)_{\alpha})_{\beta}(f^{\alpha},h^{\alpha}(f,h)_{\alpha})_{\beta}.$$

$$((fh)^{\beta})^{\alpha} = (f^{\beta}h^{\beta}(f,h)_{\beta})^{\alpha} = f^{\beta\alpha}(h^{\beta}(f,h)_{\beta})^{\alpha}(f^{\beta},h^{\beta}(f,h)_{\beta})_{\alpha}$$

$$= f^{\beta\alpha}h^{\beta\alpha}(f,h)^{\alpha}_{\beta}(h^{\beta},(f,h)_{\beta})_{\alpha}(f^{\beta},h^{\beta}(f,h)_{\beta})_{\alpha}.$$

Сокращая обе части на $f^{\alpha\beta}h^{\alpha\beta}$, получаем 2).

Доказательство теоремы 4.1. Рассмотрим α -коммутатор $(x,y)_{\alpha}$. Если $\alpha=0,1,$ то $(x,y)_{\alpha}=e$ и такой α -коммутатор не может порождать R-коммутант. Предположим, что $\alpha\neq 0,1,$ и обозначим через H вербальную R-подгруппу, порождённую $(x,y)_{\alpha}$. Тогда ясно, что $H\subseteq (G,G)_R$, где $(G,G)_R$ есть R-коммутант группы G. В фактор-группе G/H тождество 2) принимает вид

$$(g^{\alpha}, f^{\alpha})_{\beta} = (g, f)^{\alpha}_{\beta}$$
 для любого $\beta \in R$.

Переписывая последнее тождество при $\beta = -1$, получаем

$$[f^{-\alpha}, g^{-\alpha}] = [f^{-1}, g^{-1}]^{\alpha}.$$

С другой стороны, тождество 1) влечет равенство $[g^{\alpha},f]=[g,f]^{\alpha}$ в группе G/H, а поэтому $[g^{\alpha},f^{\alpha}]=[f,g]^{\alpha^2}$ в G/H. Следовательно, в G/H имеем

$$[f^{-1}, g^{-1}]^{\alpha^2} = [g^{-\alpha}, f^{-\alpha}] = [f^{-1}, g^{-1}]^{\alpha},$$

а значит

$$[f^{-1}, g^{-1}]^{\alpha^2 - \alpha} = e.$$

Так как R — поле, и $\alpha^2 - \alpha \neq 0$, получаем $[f^{-1}, g^{-1}] = e$ в G/H для всех $f, g \in G$. Следовательно, фактор-группа G/H является абелевой R-группой, а потому $H = (G, G)_R$.

Опишем теперь абелевы многообразия степенных R-групп. Для этого прежде всего выясним структуру свободной абелевой степенной R-группы.

Теорема 4.2. Свободная абелева R-группа c базой X является свободным R-модулем c базой X и R-изоморфна фактор-группе свободной R-группы c базой X по её R-коммутанту.

 $\ensuremath{\mathcal{L}}$ доказательство. Первая часть теоремы хорошо известна в теории модулей, так как произвольная абелева R-группа является R-модулем. Докажем, что

$$F_R(X)/(F_R(X),F_R(X))_R$$

является свободным R-модулем с базисом X. По предложению 4.1 R-коммутант любой R-группы является вербальной R-подгруппой, определяемой словом $x^{-1}y^{-1}xy$, а потому, по теореме 2.1 фактор-группа $F_R(X)/(F_R(X),F_R(X))_R$ является свободной группой с базой X в многообразии групп, определяемых тождеством $x^{-1}y^{-1}xy = e$. Последнее многообразие является многообразием абелевых R-групп.

В силу теоремы 4.2, описание многообразий абелевых степенных R-групп эквивалентно описанию всех вербальных R-подгрупп в свободном R-модуле. Заметим, что в абелевом случае вербальная R-подгруппа, порождённая множеством R-слов W, порождается как R-подгруппа значениями всех R-слов $w \in W$. Кроме того, можно считать, что любое слово в свободном R-модуле с базисом X имеет вид $x_1^{\alpha_1} \cdots x_k^{\alpha_k}$, где $x_i \in X$ и $\alpha_i \in R$.

Предложение 4.3. Пусть $A_R(X)$ — свободная абелева R-группа c базисом X и H — вербальная R-подгруппа $A_R(X)$, порожедённая множеством R-слов W. Тогда H порожедается множеством R-слов $W_0 = \{x^{\alpha_i} \mid i \in I\}$ для некоторого подмножества $\{\alpha_i \in R \mid i \in I\}$ элементов из R и букви x.

Доказательство. Пусть $w \in W$ имеет вид $x_1^{\alpha_1} \cdots x_k^{\alpha_k}$. Заметим, что по следствию 1 вербальная R-подгруппа H инвариантна относительно всех

эндоморфизмов из $A_R(X)$, в частности, эндоморфизмов $x_i \to x_i$ и $x_j \to e$ при $j \neq i$. Отсюда получаем, что каждый элемент $x_i^{\alpha_i}$ $(i=1,\ldots,k)$ принадлежит H. Ясно, что H такими элементами порождается.

В дальнейшем будем предполагать, что любая вербальная R-подгруппа в свободном R-модуле $A_R(X)$ порождена некоторым множеством R-слов $W=\{x^{\alpha_i}\mid i\in I\}$, описанным выше. Поставим в соответствие множеству W двусторонний идеал $J_W=id\,(\alpha_i\mid i\in I)$ кольца R и соответственно R-подмодуль $A_R(X)^{J_W}$ модуля $A_R(X)$, порожденный всеми элементами вида g^{α} , где $g\in A_R(X)$ и $\alpha\in J_W$. Понятно, что $A_R(X)^{J_W}$ есть вербальная R-подгруппа $A_R(X)$. Как показывает следующее предложение, все вербальные подгруппы $A_R(X)$ имеют вид $A_R(X)^{J_W}$.

Предложение 4.4. Пусть H — вербальная R-подгруппа свободной абелевой R-группы $A_R(X)$, порожденная множеством слов $W = \{x^{\alpha_i} \mid i \in I\}$. Тогда $H = A_R(X)^{J_W}$.

Доказательство. Пусть δ — произвольный элемент из J_W . Тогда

$$\delta = \sum_{i=1}^{t} \beta_i \alpha_i \gamma_i,$$

где $\alpha_i \in I$ и β_i , γ_i — произвольные элементы кольца R. Пусть $g \in A_R(X)$, тогда $g^{\beta_i} \in A_R(X)$ и $(g^{\beta_i})^{\alpha_i} \in H$. Отсюда следует, что $g^{\beta_i \alpha_i \gamma_i} \in H$, и следовательно, $g^{\delta} \in H$. Поэтому $A_R(X)^{J_W} \subseteq H$. Включение $H \subseteq A_R(X)^{J_W}$ очевидно, а значит, $A_R(X)^{J_W} = H$.

Теорема 4.3. Существует взаимно-однозначное соответствие между решёткой двусторонних идеалов кольца R и решёткой вербальных R-подгрупп свободного R-модуля.

Доказательство. Как следует из доказательства предложения 4.4, двусторонний идеал J_W не зависит от выбора слов W, определяющего вербальную подгруппу H, и однозначно определяется этой R-подгруппой. Верно и обратное: двустороннему идеалу J кольца R соответствует вербальная R-подгруппа $H = A_R(X)^J$. Нетрудно проверяется, что это соответствие взаимно-однозначное и оно сохраняет решёточные операции. \square

Следствие. При $R = \mathbb{Z}$ любое собственное подмногообразие абелевых групп есть многообразие абелевых групп периода $n \geq 2$.

Доказательство. Это сразу следует из теоремы 4.3, так как любой идеал кольца $\mathbb Z$ имеет вид $n\mathbb Z$.

Теорема 4.4. Любое множество R-слов V в алфавите X эквивалентно множеству R-слов вида

$$W = \{ x_1^{\alpha_i}, \ u_j \mid \ i \in I, \ j \in J \},\$$

где u_j — слова из R-коммутанта группы $F_R(X)$.

Доказательство. Запишем каждое слово $w \in W$ в виде

$$w = x_{i_1}^{\alpha_1} \cdots x_{i_s}^{\alpha_s} u,$$

где все значки i_1, \ldots, i_s различны, а u — элемент из R-коммутанта. Обозначим через S двусторонний идеал кольца R, порождённый элементами $\alpha_1, \ldots, \alpha_s$ по всем словам $w \in W$. Пусть $\{\alpha_i \mid i \in I\}$ — любое множество порождающих S как двустороннего идеала. Тогда это множество и слова вида u по всем W — искомые.

5 Ряды *R*-коммутантов и разрешимые *R*-группы

Напомним, что в классе всех групп многообразие всех разрешимых групп ступени $\leq n$ аксиоматизируется тождеством $v_n(\bar{x}) = e$, где слова $v_n(\bar{x})$ определяются индуктивно:

$$v_n(x_1,\ldots,x_{2^n})=[v_{n-1}(x_1,\ldots,x_{2^{n-1}}),v_{n-1}(x_{2^{n-1}+1},\ldots,x_{2^n})],$$

здесь $v_0(x_1) = x_1$. В свою очередь, ряд коммутантов группы G

$$G = G^{(0)} \ge G^{(1)} \ge \dots \ge G^{(n)} \ge \dots$$
 (5.1)

определяется по индукции равенством $G^{(n)} = [G^{(n-1)}, G^{(n-1)}]$. Легко видеть, что вербальная R-подгруппа R-группы G, порожденная словом $v_n(\bar{x})$, есть в точности R-идеал $G^{(n)}$, т. е.

$$v_{n,R}(G) = id_R(G^{(n)}).$$

Ряд R-подгрупп (5.1) естественным образом поднимается до ряда R-идеалов

$$G = G_0 \ge id_R(G^{(1)}) \ge \dots \ge id_R(G^{(n)}) \ge \dots$$
 (5.2)

Как можно было ожидать, справедлив следующий результат, и его доказательство получается непосредственно из определений.

Предложение 5.1. R-группа G является разрешимой ступени $\leq n$ тогда и только тогда, когда $id_R(G^{(n)}) = e$.

Таким образом, казалось бы, идеалы $id_R(G^{(n)})$ дают естественный аналог ряда коммутантов (5.1). Однако заметим, что факторы ряда (5.1) абелевы, а верно ли это для ряда (5.2) — не известно. Известно только, что $G/id_R([G,G])$ является абелевой группой. Таким образом, в классе \mathcal{M}_R возникает интересный вопрос.

Вопрос 5.1. Верно ли, что каждая разрешимая R-группа G обладает конечным рядом R-идеалов

$$G = H_0 \geq_R H_1 \geq_R \ldots \geq_R H_n = e$$
,

с абелевыми факторами $H_i/H_{i+1}, i = 0, \dots n-1$?

Попытаемся слегка прояснить этот вопрос. В предыдущем параграфе было определено понятие R-коммутанта $(G,G)_R$ группы G из класса \mathcal{M}_R . Будем называть его первым R-коммутантом R-группы G и обозначать его через $G^{(1,R)}$. R-коммутант от $G^{(1,R)}$ будем называть вторым R-коммутантом и обозначать $G^{(2,R)}$ и т. д., $G^{(n+1,R)} = (G^{(n,R)}, G^{(n,R)})_R$. Возникает убывающий $p n \partial R$ -коммутантов группы G

$$G = G^{(0,R)} \trianglerighteq_R G^{(1,R)} \trianglerighteq_R G^{(2,R)} \trianglerighteq_R \dots \trianglerighteq_R G^{(n,R)} \trianglerighteq_R \dots$$

$$(5.3)$$

с абелевыми факторами $G^{(i,R)}/G^{(i+1,R)}, i=0,1,\ldots$

Индукцией по n нетрудно доказывается следующее утверждение.

Предложение 5.2. Пусть G-R-группа. Тогда для любого натурального n

$$id_R(G^{(n)}) \le G^{(n,R)},$$
 (5.4)

причем равенства $id_R(G^{(n)}) = G^{(n,R)}$, $n \in \mathbb{N}$, имеют место тогда и только тогда когда все факторы ряда (5.2) абелевы.

Предложение 5.3. Пусть G - R-группа. Если

$$G = H_0 \supseteq_R H_1 \supseteq_R \dots \supseteq_R H_n = e$$

есть ряд R-идеалов c абелевыми факторами H_i/H_{i+1} , $i=0,\ldots n-1$, то $H_i \geq G^{(i,R)}$ для всех $i=0,\ldots,n$.

Доказательство. По построению $H_0 = G^{(0,R)}$. Предположим, что $H_i \ge G^{(i,R)}$ для некоторого натурального i. Поскольку фактор H_i/H_{i+1} абелев, по предложению $4.1 \ H_{i+1} \ge (H_i, H_i)_B$. Напомним, что

$$(H_i, H_i)_R = \langle (g, h)_\alpha \mid g, h \in H_i, \alpha \in R \rangle_R.$$

Так как $H_i \geq G^{(i,R)}$ получаем, что

$$(H_i, H_i)_R \ge \langle (g, h)_\alpha \mid g, h \in G^{(i,R)}, \alpha \in R \rangle_R = (G^{(i,R)}, G^{(i,R)})_R = G^{(i+1,R)}.$$

Следовательно, $H_{i+1} \ge (H_i, H_i)_R \ge G^{(i+1,R)}$. Индукция завершает доказательство предложения.

Из включения (5.4) следует, что если $G^{(n,R)}=e$, то G — разрешимая R-группа ступени разрешимости $\leq n$.

Определение 5.1. Степенную R-группу будем называть R-разрешимой, или верхне разрешимой, если $G^{(n,R)}=e$ для некоторого натурального n. В этом случае, наименьшее такое n называется ступенью верхней разрешимости G.

Понятно, что верхне разрешимая R-группа ступени разрешимости n является разрешимой R-группой ступени $\leq n$.

Предложение 5.4. R-группа G является верхне разрешимой тогда u только тогда когда G обладает конечным рядом R-идеалов

$$G = H_0 \bowtie_R H_1 \bowtie_R \ldots \bowtie_R H_n = e$$

c абелевыми факторами $H_i/H_{i+1}, i = 0, \dots n-1.$

Дискуссия выше естественно ведет к следующим открытым вопросам.

Вопрос 5.2. Верно ли, что $G^{(n,R)} = id(G^{(n)})$ для каждого натурального n?

Вопрос 5.3. Всякая ли разрешимая R-группа является верхне разрешимой? И если это так, то как соотносятся их ступени разрешимости?

Ряд R-коммутантов (5.3) можно продолжить до любого ординала α . Если α — непредельный ординал, то $G^{(\alpha,R)}=(G^{(\alpha-1,R)},G^{(\alpha-1,R)})_R$. Если же α — предельный ординал, то

$$G^{(\alpha,R)} = \bigcap_{\beta < \alpha} G^{(\beta,R)}.$$

Вопрос 5.4. Пусть $F = F_R(X)$ — свободная R-группа с базой X. Для любого ли кольца R существует ординал α зависящий от R, такой, что $F^{(\alpha,R)} = e$?

6 Центральные ряды и нильпотентные *R*-группы

Напомним, что нижний центральный ряд группы G

$$G = \gamma_1 G \ge \gamma_2 G \ge \dots \ge \gamma_n G \ge \dots \tag{6.1}$$

определяется по индукции: $G = \gamma_1 G, \gamma_{n+1} G = [\gamma_n G, G]$. Наименьшее n такое, что $\gamma_n G \neq e$, но $\gamma_{n+1} G = e$, называется ступенью нильпотентости группы G. Ряд (6.1) — центральный, т. е. $[\gamma_n G, G] \leq \gamma_{n+1} G$ для любого n.

В категории R-групп желательно иметь не только нормальные R-подгруппы, но R-идеалы. Это ведет к следующему определению.

Определение 6.1. Пусть G-R-группа. Для натурального $n\in\mathbb{N}$ положим

$$\gamma_{n,R}G = id_R(\gamma_n G).$$

Предложение 6.1. Пусть G-R-группа. Тогда выполнены следующие утверждения:

- 1) $id_R(\gamma_n G)$ это вербальный идеал, порожденный лево-нормированным коммутатором $w_n = [x_1, \dots, x_n]$, где $w_1 = x_1, w_{n+1} = [w_n, x_{n+1}]$.
- 2) $id_R(\gamma_n G)$ это наименьший по включению R-идеал G, такой что группа $G/id_R(\gamma_n G)$ нильпотентна ступени < n.
- 3) G нильпотентна ступени < n тогда и только тогда, когда $id_R(\gamma_n G) = e$.

Таким образом, в группах G из класса \mathfrak{M}_R идеалы $id_R(\gamma_n G)$ наследуют многие свойства подгрупп $\gamma_n G$ в классе всех групп. Рассмотрим соответствующий ряд

$$G = id_R(\gamma_1 G) \ge id_R(\gamma_2 G) \ge \dots \ge id_R(\gamma_n G) \ge \dots$$
 (6.2)

Возникает естественный вопрос.

Вопрос 6.1. Является ли ряд (6.2) центральным, т.е. верно ли, что $[id_R(\gamma_n G), G] \leq id_R(\gamma_{n+1} G)$ для каждого натурального n?

Чтобы лучше прояснить этот вопрос, введем нижний центральный ряд R-идеалов R-группы G.

Определение 6.2. Определим нижний центральный ряд R-идеалов R-группы G по индукции: $\gamma_{1,R}G=G$ и

$$\gamma_{n+1,R}G = id_R([\gamma_{n,R}G,G]).$$

Таким образом,

$$G = \gamma_{1,R}G \ge \gamma_{2,R}G \ge \dots \ge \gamma_{n,R}G \ge \dots$$
 (6.3)

По построению ряд (6.3) — центральный, что оправдывает его название.

Предложение 6.2. Пусть G - R-группа. Тогда ряд (6.2) централен тогда и только тогда, когда $\gamma_{n,R}G = id_R(\gamma_n G)$ для каждого n. В этом случае ряды (6.2) и (6.3) совпадают.

Доказательство. По предложению 6.3 для каждого натурального n $id_R(\gamma_n G) \leq \gamma_{n,R} G$. Предположим, что ряд (6.2) централен, то есть $[id_R(\gamma_n G),G] \leq id_R(\gamma_{n+1} G)$ для каждого натурального n. Докажем по индукции, что в этом случае $\gamma_{n,R} G = id_R(\gamma_n G)$ для каждого n. Заметим, что $\gamma_{1,R} G = id_R(\gamma_1 G)$ и предположим, что $\gamma_{n,R} G = id_R(\gamma_n G)$ для некоторого n. Тогда

$$\gamma_{n+1,R}G = id_R([\gamma_{n,R}G,G]) = id_R([id_R(\gamma_nG),G]) \le id_R(\gamma_{n+1}G),$$

а значит $\gamma_{n+1,R}G = id_R(\gamma_{n+1}G)$. Таким образом ряды (6.2) и (6.3) совпадают. Обратное очевидно.

Нильпотентные R-группы, в которых $\gamma_{n,R}G = id_R(\gamma_n G)$ для каждого n, обладают многими свойствами, схожими с обычными нильпотентными группами, в частности, некоторые методы классической теории нильпотентных групп работают и в этих группах. В свази с этим определим некоторый «функтор» для групп из класса \mathcal{M}_R , «измеряющий» отклонение от классического случая.

Определение 6.3. Для группы $G \in \mathcal{M}_R$ и натурального n положим

$$M_n(G) = \gamma_{n,R} G/id_R(\gamma_n G).$$

Вопрос 6.2. Верно ли, что для свободных, свободных разрешимых и свободных нильпотентных R-групп G $M_n(G) = e$ для каждого n?

Вопрос 6.3. Существует ли R-группа G, для которой $M_n(G) \neq e$ для некоторого n? Это сводится к вопросу, существует ли нильпотентная R-группа G, для которой $M_n(G) \neq e$ для некоторого n?

Классический нижний центральный ряд группы G можно продолжить до любого ординала α , получая $\gamma_{\alpha}G$. Точно так же ряды (6.2) и (6.3) можно продолжить для любого ординала α . А именно, ряд (6.2) определяется как $id_R(\gamma_{\alpha}G)$. Для ряда (6.3) нужно рассмотреть два случая: если

 α — непредельный ординал, то $\gamma_{\alpha,R}G=id_R([\gamma_{\alpha-1,R}G,G]);$ если же α — предельный ординал, то

$$\gamma_{\alpha,R}G = \bigcap_{\beta < \alpha} \gamma_{\beta,R}G.$$

Вопрос 6.4. Пусть $F = F_R(X)$ — свободная R-группа с базой X. Для любого ли кольца R существует ординал β такой, что

- 1) $id_R(\gamma_{\beta}F) = e$?
- 2) $\gamma_{\beta,R}F = e$?

Еще более загадочным является следующее обобщение классического нижнего центрального ряда на R-группы G. Для этого индукцией по n определим понятие простого $\overline{\alpha}$ -коммутатора веса n, где $\overline{\alpha} = (\alpha_1, \dots, \alpha_{n-1})$, $\alpha_i \in R$. При n=1 полагаем, что простые $\overline{\alpha}$ -коммутаторы веса 1— это в точности все элементы из G. Если n=2, то $\overline{\alpha} = (\alpha_1)$ и в этом случае простой $\overline{\alpha}$ -коммутатор — это α_1 -коммутатор $(g_1, g_2)_{\alpha_1}$ произвольных элементов g_1, g_2 из G, определенный выше. Пусть для $n \geq 2$ простые $\overline{\alpha}$ -коммутаторы веса n уже определены. Тогда простой $(\overline{\alpha}, \alpha_n)$ -коммутатор веса n+1 (здесь $\alpha_n \in R$) есть α_n -коммутатор $(g, g_n)_{\alpha_n}$, где g есть простой $\overline{\alpha}$ -коммутатор веса n.

Далее, пусть $X = \{x_1, x_2, \dots\}$ — множество букв. Обозначим через

$$W_n = \left\{ \left(\cdots ((x_1, x_2)_{\alpha_1}, x_3)_{\alpha_2}, \dots, x_n \right)_{\alpha_n} \mid \alpha_1, \dots, \alpha_{n-1} \in R \right\}$$

множество всех простых $\overline{\alpha}$ -коммутаторов веса n+1 от букв x_1,\ldots,x_n , где $\overline{\alpha}=(\alpha_1,\ldots,\alpha_n).$

Определение 6.4. Вербальную R-подгруппу R-группы G, порождённую множеством слов W_n , будем обозначать через $\widetilde{\gamma}_{n,R}(G)$. Таким образом, $\widetilde{\gamma}_{n,R}(G)$ есть R-идеал, порожденный всеми простыми $\overline{\alpha}$ -коммутаторами веса n.

Предложение 6.3. Для любой R-группы G и любого натурального n справедливы следующие включения

$$\gamma_{n,R}G \ge \widetilde{\gamma}_{n,R}(G) \ge id_R(\gamma_n G).$$

Доказательство. Обозначим через $Com_{R,n}(G)$ множество всех простых $\overline{\alpha}$ -коммутаторов веса n в G. Поскольку каждый обычный простой коммутатор $[g_1,g_2,\ldots,g_n]$ веса n является также $\overline{\alpha}$ -коммутатором веса n при надлежащем выборе $\overline{\alpha}$, то $\widetilde{\gamma}_{n,R}(G)$ содержит все обычные простые коммутаторы из G веса n, а значит, $\widetilde{\gamma}_{n,R}(G) \geq id_R(\gamma_n G)$.

Теперь докажем по индукции, что $\gamma_{n,R}G \geq \widetilde{\gamma}_{n,R}(G)$. Для n=1 $\gamma_{n,R}G = G = \widetilde{\gamma}_{n,R}(G)$. Допустим по индукции, что $\gamma_{n,R}G \geq \widetilde{\gamma}_{n,R}(G)$. Тогда $[\gamma_{n,R}G,G]$ содержит все обычные коммутаторы вида $[g,g_{n+1}]$, где $g \in Com_{R,n}(G)$. Поэтому R-идеал $\gamma_{n+1,R}G = id_R([\gamma_{n,R}G,G])$ содержит все α_{n+1} -коммутаторы $(g,g_{n+1})_{\alpha_{n+1}}$ веса 2. Поскольку все такие коммутаторы дают, в точности, все $\overline{\alpha}$ -коммутаторы веса n+1, то $\gamma_{n+1,R}G$ содержит $Com_{R,n+1}(G)$, а значит, и весь идеал $\widetilde{\gamma}_{n,R}(G)$. Это завершает доказательство предложения.

Обозначим через $\underline{N}_{n,R}$, $\widetilde{N}_{n,R}$, $\overline{N}_{n,R}$ соответственно классы R-групп G, где $\gamma_{n,R}G=e$, $\widetilde{\gamma}_{n,R}(G)=e$, $id_R(\gamma_nG)=e$. Тогда из предложения 6.3 получаем включения

$$\underline{\mathcal{N}}_{n,R} \subseteq \mathcal{N}_{n,R} \subseteq \overline{\mathcal{N}}_{n,R}$$
.

Как мы видели раньше, $\gamma_{2,R}G = id_R(\gamma_2 G)$, поэтому

$$\underline{\mathcal{N}}_{2,R} = \mathcal{N}_{2,R} = \overline{\mathcal{N}}_{2,R}.$$

Вопрос о совпадении этих классов для n > 2 остается открытым и зависит от решения вопроса 6.3.

В [2] отмечено, что тензорные пополнения абелевых *R*-групп являются абелевыми *R*-группами. В общем случае тензорное пополнение в категории всех степенных *R*-групп строится с помощью свободных конструкций (см. [4]), а потому, как правило, в некоммутативном случае содержит свободные подгруппы. Тем не менее справедлива

Теорема 6.1. Если G — нильпотентная R-группа ступени нильпотентности 2, то её тензорное пополнение G^S также является нильпотентной S-группой ступени 2.

Доказательство. Обозначим R-центр группы G через Z. Так как ступень нильпотентности G равна 2, то R-коммутант $\gamma_1(G) \subseteq Z$. Непосредственная проверка показывает, что Z^S — центральная подгруппа группы G^S . Покажем, что $\gamma_1(G^S) \subseteq Z^S$. Так как G^S порождается $\langle \lambda(G) \rangle_S$ (здесь $\lambda \colon G \to G^S$ — канонический гомоморфизм из определения S-пополнения) и так как обычный коммутант содержится в центре, то нетрудно проверить с помощью коммутаторных соотношений [13, с. 171], что обычный коммутант группы G^S принадлежит Z^S . Далее тождество (4.2) из предложения 4.2 показывает, что в этом случае $[x^\alpha, y] = [x, y]^\alpha$. Проверим, что α -коммутатор $(x, y)_\alpha$ лежит в центре G^S :

$$[(x,y)_{\alpha},z] = [y^{-\alpha}x^{-\alpha}(xy)^{\alpha},z] = [y^{-\alpha},z][x^{-\alpha},z][(xy)^{\alpha},z] =$$

$$= [y,z]^{-\alpha}[x,z]^{-\alpha}[xy,z]^{\alpha} = [y,z]^{-\alpha}[x,z]^{-\alpha}[x,z]^{\alpha}[y,z]^{\alpha} = e. \quad \Box$$

Список литературы

- [1] R. C. Lyndon, Groups with parametric exponents. Trans. Amer. Math. Soc. 96 (1960), 518–533.
- [2] А. Г. Мясников, В. Н. Ремесленников, Степенные группы. І. Основы теории и тензорные пополнения. Сиб. мат. эксури. 35 (1994), № 5, 1106–1118.
- [3] М. Г. Амаглобели, В. Н. Ремесленников, Свободные 2-ступенно нильпотентные R-группы. Докл. AH 443 (2012), № 4, 410–413.
- [4] М. Г. Амаглобели, Функтор тензорного пополнения в категориях степенных MR-групп. Алгебра логика **57** (2018), № 2, 137–148.
- [5] A. G. Myasnikov, V. N. Remeslennikov, Exponential groups. II. Extensions of centralizers and tensor completion of CSA-groups. *Internat. J. Algebra Comput.* 6 (1996), no. 6, 687–711.
- [6] G. Baumslag, A. Myasnikov, V. Remeslennikov, Discriminating completions of hyperbolic groups. Dedicated to John Stallings on the occasion of his 65th birthday. *Geom. Dedicata* 92 (2002), 115–143.

- [7] М. Г. Амаглобели, В. Н. Ремесленников, Расширения централизаторов в нильпотентных группах. Сиб. мат. Журн. 54 (2013), № 1, 8–19.
- [8] M. Amaglobeli, V. Remeslennikov, Algorithmic problems for class-2 nilpotents *MR*-groups. *Georgian Math. J.* **22** (2015), no. 4, 441–449.
- [9] М. Г. Амаглобели, Многообразия степенных MR-групп. Докл. АН 490 (2020), № 1, 1–4.
- [10] G. Baumslag, Free abelian X-groups. Illinois J. Math. 30 (1986), no. 2, 235-245.
- [11] В. А. Горбунов, *Алгебраическая теория квазимногообразий*. Научная книга, Новосибирск, 1999.
- [12] М. И. Каргаполов, Ю. И. Мерзляков, Основы теории групп. СПб, Лань, 2009.
- [13] М. Холл. Теория групп. ИЛ, Москва, 1962.

Адреса авторов:

Амаглобели Михаил Георгиевич

Тбилисский государственный университет им. Ив. Джавахишвили, пр. Чавчавадзе 1, Тбилиси 0128, Грузия

E-mail: mikheil.amaglobeli@tsu.ge

Мясников Алексей Георгиевич

Schaefer School of Engineering & Science, Department of Mathematic Sciences, Stevens Institute of Technology, Castle Point on Hudson, Hoboken NJ 07030-5991, USA.

E-mail: amiasnikov@gmail.com

Надирадзе Теона Тенгизовна

Тбилисский государственный университет им. Ив. Джавахишвили, пр. Чавчавадзе 1, Тбилиси 0128, Грузия

E-mail: teonanadiradze1997@gmail.com

РЕФЕРАТ

УДК 512.544.33

М. Г. Амаглобели, А. Г. Мясников, Т. Т. Надирадзе. Многообразия степенных R-групп

Понятие степенной R-группы, где R — произвольное ассоциативное кольцо с единицей введено Р. Линдоном. А. Г. Мясников и В. Н. Ремесленников уточнили понятие R-группы, введя дополнительную аксиому. В частности, новое понятие степенной MR-группы (R-кольцо) является непосредственным обобщением понятие R-модуля на случай некоммутативных групп. В данной работе вводится понятие многообразия MR-групп и тензорного пополнения в многообразии. Описаны абелевы многообразия MR-групп и проведено сравнение различных определений нильпотентности в этой категории. Получено, что пополнение 2-ступенно нильпотентной MR-группы является 2-ступенно нильпотентной.

Ключевые слова: линдонова R-группа, MR-группа, многообразие MR-групп, α -коммутатор, R-коммутант, нильпотентная MR-группа, тензорное пополнение.

ABSTRACT

UDC 512.544.33

M. G. Amaglobeli, A. G. Myasnikov, T. T. Nadiradze. Varieties of exponential *R*-groups

In this paper we introduce the notion of a variety of exponential MR-groups and tensor completions of groups in varieties. We study

relationships between free groups of a given variety under different rings of scalars and describe varieties of abelian MR-groups. Moreover, in the category of MR-groups, we consider several analogs of n-class nilpotent groups. We got that the completion of a 2-class nilpotent group is a 2-class nilpotent.

Keyword: Lyndon's R-groups, MR-groups, varieties of MR-groups, α -commutator, R-commutant, tensor completion, nilpotent MR-group.